Pemodelan Prediksi Pendapatan Individu sebagai Strategi Analitik Ekonomi Berbasis Data Census-Income (KDD)
DOI:
https://doi.org/10.54342/57mszs92Keywords:
Business Analytics, Data Sensus, Prediksi PendapatanAbstract
Penelitian ini menerapkan analisis business analytics untuk memprediksi pendapatan individu berdasarkan data sensus Census-Income (KDD) dari UCI Machine Learning Repository. Dataset mencakup 199.523 data individu dari wilayah Los Angeles dan Long Beach selama tiga periode sensus: 1970, 1980, dan 1990. Penelitian menggunakan algoritma Gaussian Naïve Bayes dengan pembagian data sebesar 80% untuk pelatihan dan 20% untuk pengujian. Proses mencakup preprocessing, eksplorasi statistik, pemodelan, dan evaluasi. Hasil menunjukkan akurasi klasifikasi sebesar 84,7%, dengan nilai precision 0,82 dan recall 0,85. Visualisasi data dilakukan menggunakan histogram, scatter plot, dan heatmap. Penelitian ini memberikan kontribusi dalam membangun model prediktif berbasis data demografis, serta menjadi dasar dalam perumusan kebijakan sosial-ekonomi yang lebih inklusif dan berbasis bukti.
References
Bernardo, B. M. V., Mamede, H. S., Barroso, J. M. P., & dos Santos, V. M. P. D. (2024). Data governance & quality management—Innovation and breakthroughs across different fields. Journal of Innovation and Knowledge, 9(4). https://doi.org/10.1016/j.jik.2024.100598
Census-Income (KDD) [Dataset]. (2020). UCI Machine Learning Repository. https://doi.org/10.24432/C5N30T
Faúndez, M. O., & Mella, H. D. L. F. (2022). Citation: Faúndez, M.O.; de la Fuente-Mella, H. Data Analysis and Domain Knowledge for Strategic mathematics Data Analysis and Domain Knowledge for Strategic Competencies Using Business Intelligence and Analytics. https://doi.org/10.3390/math
Kraus, S., Durst, S., Ferreira, J. J., Veiga, P., Kailer, N., & Weinmann, A. (2022). Digital transformation in business and management research: An overview of the current status quo. International Journal of Information Management, 63. https://doi.org/10.1016/j.ijinfomgt.2021.102466
Liu, S., Liu, O., & Chen, J. (2023). A Review on Business Analytics: Definitions, Techniques, Applications and Challenges. In Mathematics (Vol. 11, Issue 4). MDPI. https://doi.org/10.3390/math11040899
Mahapatra, A. P. K., Nanda, A., Mohapatra, B. B., Padhy, A. K., & Padhy, I. (2020). Concept of Outlier Study: The Management of Outlier Handling with Significance in Inclusive Education Setting. Asian Research Journal of Mathematics, 7–25. https://doi.org/10.9734/arjom/2020/v16i1030228
Senthilnathan, S. (2019). Usefulness of Correlation Analysis. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3416918
Sha, D., Malarvizhi, A. S., Liu, Q., Tian, Y., Zhou, Y., Ruan, S., Dong, R., Carte, K., Lan, H., Wang, Z., & Yang, C. (2020). A state-level socioeconomic data collection of the united states for covid-19 research. Data, 5(4), 1–18. https://doi.org/10.3390/data5040118
Szukits, Á., & Móricz, P. (2024). Towards data-driven decision making: the role of analytical culture and centralization efforts. Review of Managerial Science, 18(10), 2849–2887. https://doi.org/10.1007/s11846-023-00694-1
Wolniak. (2023). The concept of descriptive analytics. Scientific Papers of Silesian University of Technology Organization and Management Series, 2023(172). https://doi.org/10.29119/1641-3466.2023.172.42
Yin, J., & Fernandez, V. (2020). A systematic review on business analytics. In Journal of Industrial Engineering and Management (Vol. 13, Issue 2, pp. 283–295). Universitat Politecnica de Catalunya. https://doi.org/10.3926/jiem.3030
Downloads
Published
Issue
Section
License
Copyright (c) 2025 M. Pahlan, Rudi Eduar

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.